## COMPARATIVE PHYSIOCHEMICAL PROPERTIES AND FATTY ACIDS PROFILE OF SEED OILS OF AVOCADO PEAR AND RIPE PAWPAW

Banji Adaramola and Onigbinde Adebayo

Department Of Basic Science, Chemistry Unit

Babcock University, Ilishan, Remo, Ogun State, Nigeria

### Abstract

The extracts of avocado and ripe pawpaw seed oils and their physiochemical and gc/ms were obtained. The physiochemical properties shows that pawpaw seed oil has slightly higher fatty acid than avocado seed oil suggesting that the pawpaw seed oil will be more stable to oxidation than avocado seed oil. The iodine values suggest that fatty acids in the oil are saturated acid which will be good for soap making. Their peroxide values are also very low suggesting good auto-oxidation stability and long shelf life. The gc/ms chromatogram indicates that there are twenty nine chemical components in the avocado seed oil and only fourteen components in ripe pawpaw seed oil. The two seed oils have good nutritional qualities and many fatty acids which can be trans- esterified to make both to be good candidates for use as a biofuel. However extensive and expensive cleanup will have to be done on the oils because of the presence of other chemical components in the oil before it can be a good biofuel. Soft ionization gc/ms methods needs to be done to further characterize the components of the seed oil and clean up methods will also be needed for the oil.

## Introduction

The avocado pear, *Persea americana M*, is a flowering plant in the family of Lauraceae (Orhevba et al, 2011), The edible part of the avocado pear is its yellow-green flesh, which has a luscious, creamy, buttery consistency and a subtle nutty flavor. Avocados are good source of Vitamin K, dietary fiber, Vitamin B6, Vitamin C, Folate and copper, potassium (they are higher in potassium than a medium banana),

Avocado also contains essential nutrients such as carbohydrates, sugar, soluble and insoluble fiber and also it is also good source of oil containing monounsaturated fat its oil and a rich source of mineral (Batista *et al*, 1993). Avocados have a high fat content of between 71 to 88% of their total calories about 20 times the average for other fruits. High avocado intake has been shown to have a beneficial effect on blood serum cholesterol levels (USDA, 2009). The avocado oil is good nourishment for the skin and is widely used in the cosmetics industry (Le poole, 1995). The nutritional composition of the avocado seed found in the literature is shown in table 1 below (Weatherby, 1934)

| <b>Table 1 Composition</b> | n of Avocado Seed | (Water – 50.4%) |
|----------------------------|-------------------|-----------------|
|----------------------------|-------------------|-----------------|

| Nutritional Component | Wet Basis (%) | Dry Basis (%) |  |
|-----------------------|---------------|---------------|--|
| Ash                   | 1.3           | 2.7           |  |

| Protein        | 2.5  | 5.0  |
|----------------|------|------|
| Reducing Sugar | 1.6  | 3.2  |
| Common Sugar   | 0.6  | 1.2  |
| Starch         | 29.6 | 60.0 |
| Pentosans      | 1.6  | 3.3  |
| Arabinose      | 2.0  | 4.1  |
| Ether Extract  | 1.0  | 2.0  |
| Fiber          | 3.7  | 7.2  |
| Undetermined   | 5.6  | 11.3 |

Increase in human population and our new quest for industrialization made it imperative for renewable energy (biofuel) as an alternative to petroleum products. The biofuel must be suitable, acceptable, economically competitive, environmentally acceptable, and easily available. Increasing environmental concern, diminishing petroleum reserves, and agriculture based economy of our country are the driving forces to promote biodiesel as an alternative fuel Biodiesel can be produced by transesterification, which is a catalyzed chemical reaction involving vegetable oil and an alcohol to yield fatty acid alkyl esters (i.e., biodiesel) and glycerol. (Rachimoellah, 2009) The fatty acid composition of avocado seed oil reported so far include Palmitic Acid C16: 1, Palmitoleic Acid C16: 1, Stearic Acid C18: 0, Oleic Acid C18: 17, Linoleic Acid C18: 2, Linolenic Acid C18: 3, Arachidic Acid C20: 0, Eliosenoic Acid C20 : 1, Behenic Acid C22 : 0, Lignoceric Acid C24 : 0 (Anonym Oil, 1987) Carica papaya (Family Caricaceae) has many biologically active compounds. Two important compounds are chymopapain and papain, which are supposed to aid in digestion (Brocklehurst et al, 1985). The high level of natural self defence compounds in the tree makes it highly resistant to insect and disease infestation (Bouanga-Kalou et al, 2011, Peter, 1991). The seed is used to treat intestinal worms, and it helps to clear nasal congestion (Elizabeth, 1994). In this paper, the physiochemical, chemical fatty acid composition of avocado and ripe pawpaw seed oils will be examined in order to their suitability as a biodiesel fuel.

#### **Result and Discussion**

The physiochemical properties reported in the literature and our laboratory is shown Table 2 below. (Rachimoellah et al, 2009). The two oils from our laboratory have almost the same specific gravity (0.90) which is comparable to values earlier reported in the literature below (Rachimoellah et al, 2009). The color of the avocado seed oil is orange while that of the pawpaw seed oil is pale yellow. Both oils have similar fruity smell. Pawpaw seed oil from our laboratory has higher free fatty acid than that reported in the literature. This might be due to the effect of different geographical location where the pawpaw is grown. Also pawpaw seed oil has slightly higher fatty acid than avocado seed oil suggesting that the pawpaw seed oil will be more stable to oxidation than avocado seed oil. The saponification value of the ripe pawpaw seed oil however is higher than that of the avocado seed oil and much lower than reported in the literature (Rachimoellah et al, 2009). The iodine values of the avocado seed oil is about five times higher than the pawpaw seed oil and about half the value reported in the literature (Rachimoellah et al, 2009). The values are however low suggesting that the oils are highly saturated and will be a good material for soap making. The peroxide values of the two oils obtained are also very low which suggests that they are stable to auto-oxidation and will have a long shelf life. But that of pawpaw seed oil is much lower than that of the avocado seed oil implying that the pawpaw seed oil will be more stable to auto-oxidation than the avocado seed oil

| Table 2 Thysiochennical Toperties of Avocado and Tawpaw Seeu On |              |              |               |  |  |
|-----------------------------------------------------------------|--------------|--------------|---------------|--|--|
| Physiochemical                                                  | Avocado      | Avocado (Our | Pawpaw (Our   |  |  |
| Property                                                        | (Literature) | Laboratory)  | Laboratory)   |  |  |
| Specific Gravity (25 <sup>0</sup> C)                            | 0.915-0.916  | 0.91         | $0.90\pm0.05$ |  |  |
| Melting Point ( <sup>0</sup> C)                                 | 10.5         |              |               |  |  |
| Flash Point                                                     | 245          |              |               |  |  |
| Refractive Index                                                | 1.462        |              |               |  |  |
| Viscosity                                                       | 0.357 poise  |              |               |  |  |
| Free Fatty Acid                                                 | 0.367-0.82 % | 2.26         | 3.81±0.12     |  |  |
| Saponification (mg/KOH                                          | 246.840      | 35.76        | 49.71±0.075±  |  |  |
| g)                                                              |              |              |               |  |  |
| Iodine (mg Iodine/g)                                            | 42.664       | 23.5         | 4.95±0.02     |  |  |
| Acid Value (mg KOH/g)                                           | 5.20         | 4.5          | 1.8±0.012     |  |  |
| Ester number                                                    | 241.6        | 31.26        | 48.17±0.01    |  |  |
| Peroxide                                                        | 3.3          | 24.0         | 0.5±0.01      |  |  |
| Number(mgO2/g)                                                  |              |              |               |  |  |
| Unsaponifiable Matters                                          | 15.250%      |              |               |  |  |
| Color                                                           |              | Orange       | Pale yellow   |  |  |
| Odor                                                            |              | fruity       | fruity        |  |  |
| % Yield                                                         |              | 8.1          | 33            |  |  |

Table 2 Physiochemical Properties of Avocado and Pawpaw Seed Oil

Figure 1 shows the gas chromatograms of the seed oils of avocado and ripe pawpaw. Figure 1a. shows that there are twenty nine chemical components in the avocado seed oil whereas there only fourteen components in that of ripe pawpaw seed oil. The chromatogram are individual components separated in increasing molecular weight similar to what was obtained for PEG dimethyl oligomers in one of our previous papers<sup>12</sup>. Table 3 includes the fatty acid obtained for the two oils by EI gas chromatography/mass spectrometry. The table shows that there are twelve (12) fatty acids in the seed avocado oil and thirteen (13) in red pawpaw seed oil. The fatty acids include C<sub>15</sub>-C<sub>23</sub> fatty acids which are more than what is reported in other papers (Anonym Oil, 1987). The EI mass spectra obtained for Pentadecanoic acid, 14-methyl, methyl ester (C<sub>17</sub>H<sub>30</sub>O<sub>2</sub>) Pentadecanoic acid, 14-methyl, methyl ester (C<sub>17</sub>H<sub>30</sub>O<sub>2</sub>) in the two oils is shown in Figure 2. There are other compounds apart from fatty acids present in the two oils. They include sesquiterpene hydroperoxides, terpenes, triterpenes, fatty alcohols, ketones, alkyl aromatic hydrocarbons, glucosides, piperidine analogs and unsaturated long chain alkenes and fragments of unknown high mass compounds (unknown).Soft ionization methods like chemical ionization will be obtained for these two oils to properly identified the components,

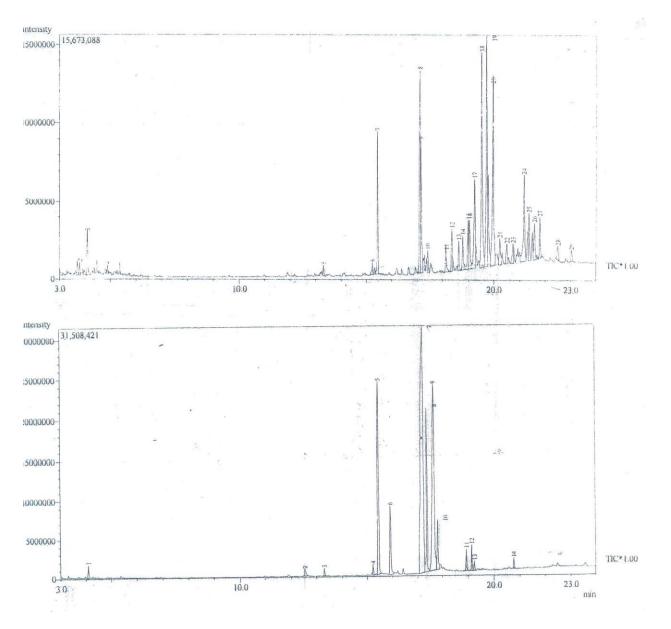
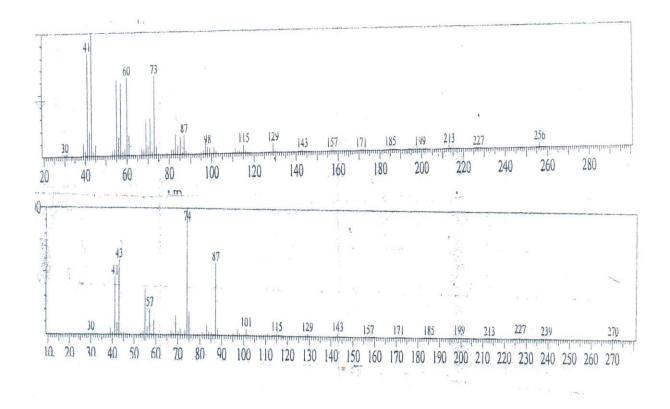



Figure 1 GC/EIMS Chromatogram of (a)Avocado (b) Ripe Pawpaw Seed Oil

| Table 3. Fatty A | cid Component | of Avocado and | Ripe Pawp | aw Seed Oils |
|------------------|---------------|----------------|-----------|--------------|
|                  |               |                |           |              |


| Peak<br>Number | Ret<br>Time<br>(Min) | Components (Avocado<br>Seed Oil)                                        | Peak<br>Number | Ret Time<br>(Min) | Component (Pawpaw<br>Seed Oil (Ripe)                                                      |
|----------------|----------------------|-------------------------------------------------------------------------|----------------|-------------------|-------------------------------------------------------------------------------------------|
| 5              | 13.308               | Pentadecanoic Acid<br>(C <sub>15</sub> H <sub>30</sub> O <sub>2</sub> ) | 3              | 13.308            | Pentadecanoic acid,<br>methyl ester<br>(C15H30O2)                                         |
| 7              | 15.433               | Pentadecanoic acid 14-<br>methyl,methyl ester<br>(C17H34O2)             | 4              | 15.225            | 9-Hexadecenoic acid,<br>methyl ester<br>(C <sub>17</sub> H <sub>30</sub> O <sub>2</sub> ) |

| 8  | 17.092 | 9,12-Octadecanoic acid<br>methyl ester(Methyl<br>Linolelaidic acid, methyl<br>ester) (C <sub>19</sub> H <sub>34</sub> O <sub>2</sub> ) | 5  | 15.458 | Pentadecanoic acid,<br>14-methyl, methyl<br>ester (C <sub>17</sub> H <sub>30</sub> O <sub>2</sub> ) |
|----|--------|----------------------------------------------------------------------------------------------------------------------------------------|----|--------|-----------------------------------------------------------------------------------------------------|
| 9  | 17.142 | 11-Octadecenoic acid,<br>methyl ester ) (C <sub>19</sub> H <sub>36</sub> O <sub>2</sub> )                                              | 6  | 25.935 | n-Hexadecanoic acid<br>(C <sub>16</sub> H <sub>32</sub> O <sub>2</sub> )                            |
| 12 | 18.342 | Arachidic (C <sub>20</sub> H <sub>39</sub> O <sub>2</sub> )                                                                            | 7  | 17.233 | 11-Octadecenoic acid,<br>methyl ester<br>(C <sub>19</sub> H <sub>36</sub> O <sub>2</sub> )          |
| 14 | 18.775 | Docosane (C <sub>20</sub> H <sub>39</sub> O <sub>2</sub> )                                                                             | 8  | 17.383 | Octadecanoic acid,<br>methyl ester<br>(C19H38O2)                                                    |
| 15 | 18.983 | Tricosane $(M+H)^+$<br>(C <sub>23</sub> H <sub>49</sub> )                                                                              | 9  | 17.658 | Oleic acid (C <sub>18</sub> H <sub>34</sub> O <sub>2</sub> )                                        |
| 18 | 19.508 | n- Hexadecanoic acid (M-<br>H) <sup>+</sup> (C <sub>17</sub> H <sub>35</sub> O)                                                        | 10 | 17.800 | Stearic acid (C <sub>18</sub> H <sub>36</sub> O <sub>2</sub> )                                      |
| 21 | 20.217 | (1R,7Z)-1-Methyl-7-<br>Hexadecenyl acetate<br>(C <sub>19</sub> H <sub>37</sub> O <sub>2</sub> )                                        | 11 | 18.933 | Oleic acid, isopropyl<br>ester (C <sub>21</sub> H <sub>40</sub> O <sub>2</sub> )                    |
| 24 | 21.158 | (Z)-Docos-13-enoic acid<br>(Euric acid,C <sub>22</sub> H <sub>4</sub> IO <sub>2</sub> )                                                | 12 | 19.133 | Arachidic acid methyl<br>ester (C <sub>21</sub> H <sub>42</sub> O <sub>2</sub> )                    |
| 26 | 21.567 | 7,10,13,16-<br>docosatetraenoic acid<br>Adrenic Acid (C22H35O2)                                                                        | 13 | 19.242 | 11-Octadecenoic acid,<br>methyl ester<br>(C19H36O2)                                                 |
| 29 | 23.01  | Oleic acid fragment<br>(C18H33O2)                                                                                                      | 14 | 20.767 | Hexadecanoic<br>acid(C20H39O2)                                                                      |
|    |        |                                                                                                                                        | 14 | 20.767 | Hexadecanoic<br>acid(C <sub>20</sub> H <sub>39</sub> O <sub>2</sub> )                               |

# Table 4 Other Chemical Components Present In Avocado and Ripe Pawpaw Seed Oils

| Peak<br>number# | Ret<br>Time<br>(Min) | Components (Avocado Seed Oil)                                                  | Ret Time<br>(Min) | Component (Pawpaw<br>Seed Oil (Ripe)                                       |
|-----------------|----------------------|--------------------------------------------------------------------------------|-------------------|----------------------------------------------------------------------------|
| 1               | 3.700                | Benzene, 1-ethyl-2methyl (C <sub>9</sub> H <sub>12</sub> )                     | 4.092             | S)-1-piperideine-6-<br>carboxylate (C6H8NO2)                               |
| 2               | 3.700                | Benzene, 1,23- trimethyl (C <sub>9</sub> H <sub>12</sub> )                     | 12.542            | Geijerone(3-<br>Isopropenyl-4-methyl-<br>4-vinylcyclohexanone<br>(C12H21O) |
| 3               | 4.100                | Benzene, 1,2,3 trimethyl Isomer<br>(C9H12)                                     |                   |                                                                            |
| 4               | 4.883                | 3,7,7 trimethyl 1,3,5, cycloheptatriene,<br>(C <sub>10</sub> H <sub>14</sub> ) |                   |                                                                            |

| 6  | 15.225  | (Sesquiterpene hydroperoxides                                               |  |
|----|---------|-----------------------------------------------------------------------------|--|
|    |         | C <sub>15</sub> H <sub>25</sub> O <sub>2</sub> ) 10α-hydroperoxyguaia-1,11- |  |
| 10 | 1 - 100 | diene                                                                       |  |
| 10 | 17.408  | Unknown (C <sub>9</sub> H <sub>11</sub> O)                                  |  |
| 11 | 18.133  | Unknown (C <sub>8</sub> H <sub>17</sub> O)                                  |  |
| 13 | 18.617  | Unknown (C19H37O)                                                           |  |
| 16 | 19.033  | (E)-3,7,11,15- Tetramethylhexadecan -                                       |  |
|    |         | 1-ol (C <sub>20</sub> H <sub>39</sub> O)                                    |  |
| 17 | 19.233  | (E)-3,7,11,15- tetramethylhexadec-2-                                        |  |
|    |         | en-1-ol (C <sub>20</sub> H <sub>37</sub> O) (E)-3,7,11,15-                  |  |
| 19 | 19.700  | 12-Tricosanone (M+H) (C <sub>23</sub> H <sub>46</sub> OH)                   |  |
| 20 | 19.958  | 9,12,15-Octadecatrien -1- ol (C <sub>18</sub> H <sub>32</sub> O)            |  |
| 22 | 20.492  | Unknown (C19H37O)                                                           |  |
| 23 | 20.733  | p-Coumaroyl glucose , [M-H] <sup>+</sup>                                    |  |
|    |         | $(C_{21}H_{41}O_2)$                                                         |  |
| 25 | 21.358  | Unknown (C <sub>21</sub> H <sub>43</sub> O <sub>2</sub> )                   |  |
| 27 | 21.783  | Unknown (C23H37O2)                                                          |  |
| 28 | 22.492  | Unknown (C <sub>23</sub> H <sub>31</sub> O <sub>2</sub> )                   |  |



**Figure 2** GC/EIMS spectra of Pentadecanoic acid, 14-methyl, methyl ester ( $C_{17}H_{30}O_2$ ) from (a) Avocado seed oil and (b) Ripe Pawpaw seed oil

## CONCLUSION

The two seed oils have good nutritional qualities and many fatty acids which can be transesterified to make both to be good candidates for use as a biofuel. However extensive and expensive cleanup will have to be done on the oils because of the presence of other chemical components in the oil before it can be a good biofuel. Pawpaw seed oil from our laboratory has higher free fatty acid than that reported in the literature which may be due to the effect of different geographical location where the pawpaw is grown. Also pawpaw seed oil has slightly higher fatty acid than avocado seed oil suggesting that the pawpaw seed oil will be more stable to oxidation than avocado seed oil. The iodine values of the two oils suggest that their acids are saturated acid and will be good for soap making. The peroxide values of the two oils are very low suggesting good auto-oxidation stability and long shelf life. The gc/ms shows that there are twenty nine chemical components in the avocado seed oil and only fourteen components in ripe pawpaw seed oil

#### Reference

- 1. Anonym *Oil as (1987) By Product of Avocado*. South African. Avocado Growers' Association Yearbook. 10: 159-162
- 2. Batista Cadeno, A., Cerezal Mezquita, P. and Funglay, V. (1993). E.I. Aguacate (Persea Americana) Nutritional Composition of Avocado Pear, (63):63-69
- 3. Brocklehurst, K. and E. Salih, (1985). Fresh non-fruit latex of *Carica papaya* contains papain, multiple forms of chymopapain A and papaya proteinase OMEGA. Biochem. J., 228(2): 525-527
- 4. Bouanga-Kalou G., Kimbonguila A, J.M. Nzikou J. M, Ganongo-Po F.B, Moutoula F.E, Panyoo-Akdowa E, Th. Silou and Desobry S (2011), Extraction and characteristics of seed oil from Papaya (*Carica papaya*) in Congo-Brazzaville, Asian Journal of

Agricultural Sciences 3(2): 132-137

- 5. Elizabeth, K.,(1994). Immense Help from Natures Workshop. 1st Edn. Elikaf Health Services Ltd., Ikeja, Lagos, pp: 207-209
- 6. Le poole, H.A.C., (1995) Natural oils and fat multifunctional ingredients for skin care. *Journal of the American oil chemist's society* (50): 47-54
- 7. Orhevba .A., B.A., Jinadu, A.O., (2011), Determination of Physicochemical Properties and Nutritional Contents of Avocado Pear (*PERSEA AMERICANA M.*), Academic Research Inte[rnational Volume 1(3), 372-38
- 8. Peter, R.N., 1991. Pawpaw (Asimina). In: Moore, J.N. and J.R. Ballington (Eds.), Genetic Resources of Temperate Fruit and Nut Trees. Acta. Hort., 290: 567-600.
- Rachimoellah H. M., Dyah Ayu Resti, Ali Zibbeni, dan I Wayan Susila (2009) Production of Biodiesel through Transesterification of Avocado (*Persea Gratissima*) Seed Oil Using Base Catalyst, JURNAL TEKNIK MESIN Vol. 11, No. 2, 85–90
- 10. USDA, (United states Department of Agriculture), (2009), Nutritional Database.
- Weatherby, L.S (1934), Composition of Avocado Seed, California Avocado Association 1934 Yearbook 19: 132-134
- Adebayo O. Onigbinde1\*, Burnaby Munson and Bamidele M. W. Amos-Tautua [2013] Sample ion/sample molecule reactions in gas chromatography/chemical ionization mass spectrometry of polyethylene glycols and polyethylene glycols dimethyl ethers. African Journal of Pure and Applied Chemistry, vol. 7(7) pp 270279